Dark Energy and Inflation from Gravitational Waves
نویسنده
چکیده
In this seven-part paper, we show that gravitational waves (classical and quantum) produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Section 5 and 6. Appendix A contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.
منابع مشابه
Detectability of inflation-produced gravitational waves
Introduction Inflation addresses most of the fundamental problems in cosmology – the origin of the flatness, large-scale smoothness, and small density inhomogeneities needed to seed all the structure seen in the Universe today. If correct, it would extend our understanding of the Universe to as early as 10−32 sec and open a window on physics at energies of order 10 GeV. However, at the moment t...
متن کاملar X iv : a st ro - p h / 05 12 01 4 v 1 1 D ec 2 00 5 Probing the early universe with inflationary gravitational waves
Near comoving wavenumber k, the gravitational-wave background (GWB) from inflation carries information about the physical conditions near two moments in cosmic history: the moment when k “left the horizon” during inflation, and the moment when it “re-entered the horizon” after inflation. We investigate the extent to which this information can be extracted if the GWB is measured by a combination...
متن کاملFive-year Wilkinson Microwave Anisotropy Probe (wmap) Observations: Cosmological Interpretation
The WMAP 5-year data provide stringent limits on deviations from the minimal, 6-parameter ΛCDM model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parityviolating interacti...
متن کاملStochastic gravitational wave background from cold dark matter halos
The current knowledge of cosmological structure formation suggests that Cold Dark Matter (CDM) halos possess a non-spherical density profile, implying that cosmic structures can be potential sources of gravitational waves via power transfer from scalar perturbations to tensor metric modes in the non-linear regime. By means of a previously developed mathematical formalism and a triaxial collapse...
متن کاملRelic Gravitational Waves and Cmb Polarization in the Accelerating Universe
In this paper we briefly present our works on the relic gravitational waves (RGW) and the CMB polarization in the accelerating universe. The spectrum of RGW has been obtained, showing the influence of the dark energy. Compared with those from non-accelerating models, the shape of the spectrum is approximately similar, nevertheless, the amplitude of RGW now acquires a suppressing factor of the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017